Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses

نویسندگان

  • Jun Su
  • Bobin Liu
  • Jiakai Liao
  • Zhaohe Yang
  • Chentao Lin
  • Yoshito Oka
  • Dan Mullan
چکیده

In nature, plants integrate a wide range of light signals from solar radiation to adapt to the surrounding light environment, and these light signals also regulate a variety of important agronomic traits. Blue light-sensing cryptochrome (cry) and red/far-red light-sensing phytochrome (phy) play critical roles in regulating light-mediated physiological responses via the regulated transcriptional network. Accumulating evidence in the model plant Arabidopsis has revealed that crys and phys share two mechanistically distinct pathways to coordinately regulate transcriptional changes in response to light. First, crys and phys promote the accumulation of transcription factors that regulate photomorphogenesis, such as HY5 and HFR1, via the inactivation of the CONSTITUTIVE PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 E3 ligase complex by light-dependent binding. Second, photoactive crys and phys directly interact with PHYTOCHROME INTERACTING FACTOR transcription factor family proteins to regulate transcriptional activity. The coordinated regulation of these two pathways (and others) by crys and phys allow plants to respond with plasticity to fluctuating light environments in nature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Protein Phosphatase 7 Regulates Phytochrome Signaling in Arabidopsis

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of p...

متن کامل

Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.

Plants fine-tune light responses through interactions between photoreceptors. We have previously reported that the greening of Arabidopsis thaliana roots is regulated synergistically by phytochromes and cryptochromes. In the present study, we investigated the functions of the N- and C-terminal domains of phytochrome B (phyB) in the interactions between phyB and cryptochrome signaling cascades. ...

متن کامل

Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.

Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue lig...

متن کامل

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling.

Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccum...

متن کامل

The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.

Blue-light responses in higher plants are mediated by specific photoreceptors, which are thought to be flavoproteins; one such flavin-type blue-light receptor, CRY1 (for cryptochrome), which mediates inhibition of hypocotyl elongation and anthocyanin biosynthesis, has recently been characterized. Prompted by classical photobiological studies suggesting possible co-action of the red/far-red abso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017